"AI ప్రతి కొన్ని ప్రశ్నలకు ఒక బాటిల్ నీళ్ళు తాగుతుంది" నుండి "ఇది ప్రాథమికంగా కొన్ని చుక్కలు" వరకు మీరు ప్రతిదీ విన్నారని నేను పందెం వేస్తున్నాను. నిజం మరింత సూక్ష్మంగా ఉంటుంది. AI యొక్క నీటి అడుగుజాడలు అది ఎక్కడ నడుస్తుంది, మీ ప్రాంప్ట్ ఎంతసేపు ఉంటుంది మరియు డేటా సెంటర్ దాని సర్వర్లను ఎలా చల్లబరుస్తుంది అనే దాని ఆధారంగా విస్తృతంగా మారుతాయి. అవును, హెడ్లైన్ నంబర్ ఉంది, కానీ అది హెచ్చరికల గుట్టలో నివసిస్తుంది.
క్రింద నేను స్పష్టమైన, నిర్ణయానికి సిద్ధంగా ఉన్న సంఖ్యలను అన్ప్యాక్ చేస్తాను, అంచనాలు ఎందుకు విభేదిస్తాయో వివరిస్తాను మరియు బిల్డర్లు మరియు రోజువారీ వినియోగదారులు సుస్థిరత సన్యాసులుగా మారకుండా నీటి ట్యాబ్ను ఎలా కుదించవచ్చో చూపిస్తాను.
దీని తర్వాత మీరు చదవడానికి ఇష్టపడే కథనాలు:
🔗 AI డేటాసెట్ అంటే ఏమిటి
డేటాసెట్లు యంత్ర అభ్యాస శిక్షణ మరియు నమూనా అభివృద్ధిని ఎలా సాధ్యం చేస్తాయో వివరిస్తుంది.
🔗 AI ట్రెండ్లను ఎలా అంచనా వేస్తుంది
మార్పులు మరియు భవిష్యత్తు ఫలితాలను అంచనా వేయడానికి AI నమూనాలను ఎలా విశ్లేషిస్తుందో చూపిస్తుంది.
🔗 AI పనితీరును ఎలా కొలవాలి
ఖచ్చితత్వం, వేగం మరియు విశ్వసనీయతను అంచనా వేయడానికి అవసరమైన కొలమానాలను విచ్ఛిన్నం చేస్తుంది.
🔗 AI తో ఎలా మాట్లాడాలి
స్పష్టత, ఫలితాలు మరియు స్థిరత్వాన్ని మెరుగుపరచడానికి ప్రభావవంతమైన ప్రాంప్టింగ్ వ్యూహాలను మార్గనిర్దేశం చేస్తుంది.
AI ఎంత నీటిని ఉపయోగిస్తుంది? మీరు నిజంగా ఉపయోగించగల త్వరిత సంఖ్యలు 📏
-
ప్రతి ప్రాంప్ట్కు, నేటి సాధారణ పరిధి: ఒక ప్రధాన స్రవంతి వ్యవస్థలో మధ్యస్థ టెక్స్ట్ ప్రాంప్ట్ కోసం సబ్-మిల్లీలీటర్ నుండి మరొకదానిపై సుదీర్ఘమైన, అధిక-కంప్యూట్ ప్రతిస్పందన కోసం పదుల మిల్లీలీటర్ల మధ్యస్థ టెక్స్ట్ ప్రాంప్ట్ను ~0.26 mL 400-టోకెన్ అసిస్టెంట్ ప్రత్యుత్తరాన్ని ~45 mL (ఉపాంత అనుమితి) వద్ద పెగ్ చేస్తుంది [2]. సందర్భం మరియు మోడల్ చాలా ముఖ్యమైనవి.
-
ఫ్రాంటియర్-స్కేల్ మోడల్కు శిక్షణ ఇవ్వడం: మిలియన్ల లీటర్ల వరకు విద్యుత్ ఉత్పత్తిని అందించగలదు , ఎక్కువగా శీతలీకరణ మరియు విద్యుత్ ఉత్పత్తిలో పొందుపరచబడిన నీటి నుండి. విస్తృతంగా ఉదహరించబడిన విద్యా విశ్లేషణ GPT-తరగతి మోడల్కు శిక్షణ ఇవ్వడానికి ~5.4 మిలియన్ లీటర్లు ~700,000 లీటర్లు - మరియు నీటి తీవ్రతను తగ్గించడానికి స్మార్ట్ షెడ్యూలింగ్ కోసం వాదించారు [3].
-
సాధారణంగా డేటా సెంటర్లు: పెద్ద సైట్లు రోజుకు వందల వేల గ్యాలన్ల , కొన్ని క్యాంపస్లలో వాతావరణం మరియు డిజైన్ ఆధారంగా అధిక శిఖరాలు ఉంటాయి [5].
నిజం చెప్పాలంటే: ఆ గణాంకాలు మొదట్లో అస్థిరంగా అనిపిస్తాయి. అవి అలాగే ఉన్నాయి. మరియు మంచి కారణాలు ఉన్నాయి.

AI నీటి వినియోగ కొలమానాలు ✅
AI ఎంత నీటిని ఉపయోగిస్తుంది అనే దానికి మంచి సమాధానం కొన్ని బాక్సులను తనిఖీ చేయాలి:
-
సరిహద్దు స్పష్టత
ఇందులో ఆన్-సైట్ కూలింగ్ వాటర్ మాత్రమే ఉంటుందా లేదా విద్యుత్ ప్లాంట్లు విద్యుత్తును ఉత్పత్తి చేయడానికి ఉపయోగించే ఆఫ్-సైట్ కార్బన్ అకౌంటింగ్ [3] మాదిరిగానే నీటి ఉపసంహరణ vs నీటి వినియోగం -
స్థాన సున్నితత్వం
kWh కి నీరు ప్రాంతం మరియు గ్రిడ్ మిశ్రమాన్ని బట్టి మారుతుంది, కాబట్టి ఒకే ప్రాంప్ట్ అది ఎక్కడ అందించబడుతుందో బట్టి వేర్వేరు నీటి ప్రభావాలను కలిగి ఉంటుంది - సాహిత్యం సమయం మరియు ప్రదేశం గురించి తెలుసుకోవాలని షెడ్యూలింగ్ను [3]. -
పనిభారం వాస్తవికత
మధ్యస్థ ఉత్పత్తి ప్రాంప్ట్లను ప్రతిబింబిస్తుందా లేదా గరిష్టంగా యాక్సిలరేటర్ను మాత్రమే ప్రతిబింబిస్తుందా? గూగుల్ TPU గణితాన్ని మాత్రమే కాకుండా, అనుమితి కోసం పూర్తి-సిస్టమ్ అకౌంటింగ్ (ఐడిల్, CPUలు/DRAM మరియు డేటా-సెంటర్ ఓవర్ హెడ్)ను నొక్కి చెబుతుంది [1]. -
శీతలీకరణ సాంకేతికత
బాష్పీభవన శీతలీకరణ, క్లోజ్డ్-లూప్ లిక్విడ్ కూలింగ్, ఎయిర్ కూలింగ్ మరియు అభివృద్ధి చెందుతున్న డైరెక్ట్-టు-చిప్ కొన్ని తదుపరి తరం సైట్లకు శీతలీకరణ నీటి వాడకాన్ని తొలగించడానికి ఉద్దేశించిన డిజైన్లను రూపొందిస్తోంది -
రోజు సమయం మరియు సీజన్
వేడి, తేమ మరియు గ్రిడ్ పరిస్థితులు నీటి వినియోగ ప్రభావాన్ని ; ఒక ప్రభావవంతమైన అధ్యయనం నీటి తీవ్రత తక్కువగా ఉన్నప్పుడు మరియు ఎక్కడ ప్రధాన ఉద్యోగాలను షెడ్యూల్ చేయాలని సూచిస్తుంది [3].
నీటి ఉపసంహరణ vs నీటి వినియోగం, వివరించబడింది 💡
-
ఉపసంహరణ = నదులు, సరస్సులు లేదా జలాశయాల నుండి తీసుకున్న నీరు (కొంత తిరిగి ఇవ్వబడింది).
-
వినియోగం = నీరు ఆవిరైపోవడం లేదా ప్రక్రియలు/ఉత్పత్తులలో కలిసిపోవడం వల్ల తిరిగి ఇవ్వబడదు
శీతలీకరణ టవర్లు ప్రధానంగా నీటిని ఆవిరి ద్వారా వినియోగిస్తాయి నీటిని ఉపసంహరించుకోవచ్చు (కొన్నిసార్లు దానిలో కొంత భాగాన్ని వినియోగిస్తుంది). ఇది నివేదిస్తున్న విశ్వసనీయ AI-నీటి సంఖ్య లేబుల్లు [3].
AIలో నీరు ఎక్కడికి వెళుతుంది: మూడు బకెట్లు 🪣
-
స్కోప్ 1 - ఆన్-సైట్ శీతలీకరణ
కనిపించే భాగం: డేటా సెంటర్లోనే నీరు ఆవిరైపోతుంది. బాష్పీభవన vs. గాలి లేదా క్లోజ్డ్-లూప్ ద్రవం బేస్లైన్ను సెట్ చేస్తాయి [5]. -
స్కోప్ 2 - విద్యుత్ ఉత్పత్తి
ప్రతి kWh ఒక దాచిన నీటి ట్యాగ్ను కలిగి ఉంటుంది; మిశ్రమం మరియు స్థానం మీ పనిభారం వారసత్వంగా పొందే లీటర్ల-kWh సంకేతాన్ని నిర్ణయిస్తాయి [3]. -
స్కోప్ 3 - సరఫరా గొలుసు
చిప్ తయారీ తయారీలో అల్ట్రా-ప్యూర్ వాటర్పై ఆధారపడుతుంది. సరిహద్దులో స్పష్టంగా ఎంబోడీడ్ ఇంపాక్ట్లు (ఉదా., పూర్తి LCA) చేర్చకపోతే మీరు దానిని “పర్ ప్రాంప్ట్” మెట్రిక్లో చూడలేరు [2][3].
సంఖ్యల వారీగా ప్రొవైడర్లు, స్వల్పభేదాలతో 🧮
-
గూగుల్ జెమిని
ఫుల్-స్టాక్ సర్వింగ్ పద్ధతిని (ఐడిల్ మరియు ఫెసిలిటీ ఓవర్ హెడ్ తో సహా) ప్రాంప్ట్ చేస్తుంది. మీడియన్ టెక్స్ట్ ప్రాంప్ట్ ~0.26 mL నీరు ~0.24 Wh శక్తితో పాటు; గణాంకాలు ఉత్పత్తి ట్రాఫిక్ మరియు సమగ్ర సరిహద్దులను ప్రతిబింబిస్తాయి [1]. -
మిస్ట్రల్ లార్జ్ 2 లైఫ్ సైకిల్
అరుదైన స్వతంత్ర LCA (ADEME/కార్బోన్ 4 తో) ~281,000 m³ మరియు 400-టోకెన్ కోసం ~45 mL అనుమితి మార్జినల్ను [2]. -
మైక్రోసాఫ్ట్ యొక్క జీరో-వాటర్ కూలింగ్ ఆశయం
డైరెక్ట్-టు-చిప్ విధానాలపై ఆధారపడి, కూలింగ్ కోసం జీరో నీటిని వినియోగించేలా రూపొందించబడ్డాయి -
జనరల్ డేటా-సెంటర్ స్కేల్
ప్రధాన ఆపరేటర్లు వ్యక్తిగత సైట్లలో రోజుకు సగటున వందల వేల గ్యాలన్లను -
మునుపటి విద్యాపరమైన బేస్లైన్
సెమినల్ "థర్స్టీ AI" విశ్లేషణ GPT-తరగతి మోడళ్లకు శిక్షణ ఇవ్వడానికి మిలియన్ల లీటర్లను 10–50 మీడియం సమాధానాలు 500 mL సమానం కావచ్చు - అవి ఎప్పుడు/ఎక్కడ నడుస్తాయి అనే దానిపై ఎక్కువగా ఆధారపడి ఉంటుంది [3].
అంచనాలు ఎందుకు అంతగా విభేదిస్తున్నాయి 🤷
-
విభిన్న సరిహద్దులు
కొన్ని గణాంకాలు ఆన్-సైట్ శీతలీకరణను మాత్రమే ; మరికొన్ని విద్యుత్తు నీటిని చిప్ తయారీని జోడించవచ్చు . యాపిల్స్, నారింజ మరియు ఫ్రూట్ సలాడ్ [2][3]. -
వివిధ పనిభారాలు
ఒక చిన్న టెక్స్ట్ ప్రాంప్ట్ అనేది దీర్ఘ మల్టీమోడల్/కోడ్ రన్ కాదు; బ్యాచింగ్, కాన్కరెన్సీ మరియు జాప్యం లక్ష్యాలు వినియోగాన్ని మారుస్తాయి [1][2]. -
వేర్వేరు వాతావరణాలు మరియు గ్రిడ్లు
వేడి, శుష్క ప్రాంతంలో బాష్పీభవన శీతలీకరణ ≠ చల్లని, తేమతో కూడిన ప్రాంతంలో గాలి/ద్రవ శీతలీకరణ. గ్రిడ్ నీటి తీవ్రత విస్తృతంగా మారుతుంది [3]. -
విక్రేత పద్ధతులు
గూగుల్ సిస్టమ్-వైడ్ సర్వింగ్ పద్ధతిని ప్రచురించింది; మిస్ట్రాల్ అధికారిక LCAని ప్రచురించింది. మరికొందరు అరుదైన పద్ధతులతో పాయింట్ అంచనాలను అందిస్తారు. ప్రాంప్ట్కు హై-ప్రొఫైల్ “టీస్పూన్లో పదిహేను వంతు” క్లెయిమ్ ముఖ్యాంశాలుగా నిలిచింది - కానీ సరిహద్దు వివరాలు లేకుండా, ఇది పోల్చదగినది కాదు [1][3]. -
కదిలే లక్ష్యం
నీటి రహిత శీతలీకరణను ప్రయోగాత్మకంగా అమలు చేస్తోంది ; అప్స్ట్రీమ్ విద్యుత్తు ఇప్పటికీ నీటి సంకేతాన్ని కలిగి ఉన్నప్పటికీ, వీటిని అమలు చేయడం వలన ఆన్-సైట్ నీరు తగ్గుతుంది [4].
AI నీటి పాదముద్రను తగ్గించడానికి మీరు ఈరోజే ఏమి చేయవచ్చు 🌱
-
కుడి-పరిమాణ మోడల్
చిన్న, టాస్క్-ట్యూన్ చేయబడిన మోడల్లు తరచుగా ఖచ్చితత్వానికి సరిపోతాయి, తక్కువ కంప్యూట్ను బర్న్ చేస్తాయి. మిస్ట్రాల్ యొక్క అంచనా బలమైన పరిమాణం-నుండి-పాదముద్ర సహసంబంధాలను నొక్కి చెబుతుంది - మరియు మీరు ట్రేడ్ఆఫ్ల గురించి తర్కించగలిగేలా మార్జినల్ అనుమితి సంఖ్యలను ప్రచురిస్తుంది [2]. -
నీటి వారీ ప్రాంతాలను ఎంచుకోండి
చల్లని వాతావరణం, సమర్థవంతమైన శీతలీకరణ మరియు kWh కి తక్కువ నీటి తీవ్రత కలిగిన గ్రిడ్లు ఉన్న ప్రాంతాలను ఇష్టపడండి; “దాహంతో కూడిన AI” పని సమయం మరియు ప్రదేశం గురించి అవగాహన కలిగి ఉండటంలో సహాయపడుతుంది [3]. -
నీటి-సమర్థవంతమైన గంటలు (చల్లని రాత్రులు, అనుకూలమైన గ్రిడ్ పరిస్థితులు) కోసం శిక్షణ/భారీ బ్యాచ్ అంచనాను సమయానికి మార్చండి -
పారదర్శక మెట్రిక్స్ కోసం మీ విక్రేతను అడగండి.
ప్రతి-ప్రాంప్ట్ నీటి డిమాండ్ , సరిహద్దు నిర్వచనాలు మరియు సంఖ్యలలో నిష్క్రియ సామర్థ్యం మరియు సౌకర్యం ఓవర్ హెడ్ ఉన్నాయి. ఆపిల్స్-టు-యాపిల్స్ పోలికలను సాధ్యం చేయడానికి విధాన సమూహాలు తప్పనిసరి బహిర్గతం కోసం ఒత్తిడి చేస్తున్నాయి [3]. -
శీతలీకరణ సాంకేతికత ముఖ్యం
మీరు హార్డ్వేర్ను నడుపుతుంటే, క్లోజ్డ్-లూప్/డైరెక్ట్-టు-చిప్ కూలింగ్ను ; మీరు క్లౌడ్లో ఉంటే, వాటర్-లైట్ డిజైన్లలో [4][5]. -
బూడిద నీటిని మరియు పునర్వినియోగ ఎంపికలను ఉపయోగించండి
అనేక క్యాంపస్లు త్రాగడానికి పనికిరాని వనరులను ప్రత్యామ్నాయం చేయవచ్చు లేదా లూప్లలో రీసైకిల్ చేయవచ్చు; పెద్ద ఆపరేటర్లు నికర ప్రభావాన్ని తగ్గించడానికి నీటి వనరులను సమతుల్యం చేయడం మరియు శీతలీకరణ ఎంపికలను వివరిస్తారు [5].
దీన్ని వాస్తవంగా చేయడానికి త్వరిత ఉదాహరణ (సార్వత్రిక నియమం కాదు): వేసవి మధ్యలో వేడి, పొడి ప్రాంతం నుండి వసంతకాలంలో చల్లగా, తేమతో కూడిన ప్రాంతానికి రాత్రిపూట శిక్షణా ఉద్యోగాన్ని మార్చడం - మరియు ఆఫ్-పీక్, కూలర్ గంటలలో దానిని నడపడం - ఆన్-సైట్ నీటి వినియోగం మరియు ఆఫ్-సైట్ (గ్రిడ్) నీటి తీవ్రత రెండింటినీ మార్చగలదు. అది ఆచరణాత్మకమైన, తక్కువ-డ్రామా గెలుపు షెడ్యూలింగ్ అన్లాక్ చేయగలదు [3].
పోలిక పట్టిక: AI నీటి ఖర్చును తగ్గించడానికి త్వరిత ఎంపికలు 🧰
| సాధనం | ప్రేక్షకులు | ధర | అది ఎందుకు పనిచేస్తుంది |
|---|---|---|---|
| చిన్న, టాస్క్-ట్యూన్ చేయబడిన నమూనాలు | ML బృందాలు, ఉత్పత్తి నాయకులు | తక్కువ–మధ్యస్థం | టోకెన్కు తక్కువ కంప్యూట్ = తక్కువ శీతలీకరణ + విద్యుత్ నీరు; LCA-శైలి రిపోర్టింగ్లో నిరూపించబడింది [2]. |
| నీరు/kWh ఆధారంగా ప్రాంత ఎంపిక | క్లౌడ్ ఆర్కిటెక్ట్లు, సేకరణ | మీడియం | తక్కువ నీటి తీవ్రత కలిగిన చల్లని వాతావరణాలు మరియు గ్రిడ్లకు మారండి; డిమాండ్-అవేర్ రూటింగ్తో జత చేయండి [3]. |
| రోజు-సమయ శిక్షణ విండోలు | MLOps, షెడ్యూలర్లు | తక్కువ | చల్లని రాత్రులు + మెరుగైన గ్రిడ్ పరిస్థితులు ప్రభావవంతమైన నీటి తీవ్రతను తగ్గిస్తాయి [3]. |
| డైరెక్ట్-టు-చిప్/క్లోజ్డ్-లూప్ కూలింగ్ | డేటా-సెంటర్ ఆపరేషన్లు | మధ్యస్థ-అధిక | సాధ్యమైన చోట బాష్పీభవన టవర్లను నివారిస్తుంది, ఆన్-సైట్ వినియోగాన్ని తగ్గిస్తుంది [4]. |
| ప్రాంప్ట్ పొడవు & బ్యాచ్ నియంత్రణలు | యాప్ డెవలపర్లు | తక్కువ | క్యాప్ రన్అవే టోకెన్లు, తెలివిగా బ్యాచ్ చేయండి, కాష్ ఫలితాలు; తక్కువ మిల్లీసెకన్లు, తక్కువ మిల్లీలీటర్లు [1][2]. |
| విక్రేత పారదర్శకత చెక్లిస్ట్ | CTOలు, స్థిరత్వం దారితీస్తుంది | ఉచితం | సరిహద్దు స్పష్టత (ఆన్-సైట్ vs ఆఫ్-సైట్) మరియు ఆపిల్స్-టు-యాపిల్స్ రిపోర్టింగ్ను బలవంతం చేస్తుంది [3]. |
| బూడిద నీరు లేదా తిరిగి పొందిన వనరులు | సౌకర్యాలు, మునిసిపాలిటీలు | మీడియం | త్రాగడానికి పనికిరాని నీటిని ప్రత్యామ్నాయం చేయడం వలన త్రాగడానికి పనికిరాని నీటి సరఫరాపై ఒత్తిడి తగ్గుతుంది [5]. |
| వేడి-పునర్వినియోగ భాగస్వామ్యాలు | ఆపరేటర్లు, స్థానిక మండళ్లు | మీడియం | మెరుగైన ఉష్ణ సామర్థ్యం పరోక్షంగా శీతలీకరణ డిమాండ్ను తగ్గిస్తుంది మరియు స్థానిక సద్భావనను పెంచుతుంది [5]. |
(“ధర” డిజైన్ ద్వారా మెత్తగా ఉంటుంది - విస్తరణలు మారుతూ ఉంటాయి.)
లోతుగా ఆలోచించండి: పాలసీ డ్రమ్ బీట్ మరింత బిగ్గరగా వినిపిస్తోంది 🥁
తప్పనిసరిగా బహిర్గతం చేయాలని ఇంజనీరింగ్ సంస్థలు పిలుపునిస్తున్నాయి , తద్వారా కొనుగోలుదారులు మరియు సంఘాలు ఖర్చులు మరియు ప్రయోజనాలను అంచనా వేయవచ్చు. సిఫార్సులలో స్కోప్ నిర్వచనాలు, సైట్-స్థాయి రిపోర్టింగ్ మరియు సైట్ మార్గదర్శకత్వం ఉన్నాయి - ఎందుకంటే పోల్చదగిన, స్థానం-అవగాహన కొలమానాలు లేకుండా, మేము చీకటిలో వాదిస్తున్నాము [3].
డీప్ డైవ్: డేటా సెంటర్లు అన్నీ ఒకే విధంగా సిప్ చేయవు 🚰
"గాలి శీతలీకరణ నీటిని ఉపయోగించదు" అనే ఒక నిరంతర అపోహ ఉంది. పూర్తిగా కాదు. గాలి-భారీ వ్యవస్థలకు తరచుగా ఎక్కువ విద్యుత్ , ఇది చాలా ప్రాంతాలలో గ్రిడ్ నుండి దాచిన నీటిని నీటి శీతలీకరణ ఆన్-సైట్ నీటి ఖర్చుతో విద్యుత్ మరియు ఉద్గారాలను తగ్గించగలదు. పెద్ద ఆపరేటర్లు ఈ ట్రేడ్-ఆఫ్లను సైట్-బై-సైట్ [1][5] ద్వారా స్పష్టంగా సమతుల్యం చేస్తారు.
డీప్ డైవ్: వైరల్ క్లెయిమ్లపై త్వరిత రియాలిటీ చెక్ 🧪
ఒకే ప్రాంప్ట్ "ఒక నీటి సీసా" లేదా మరోవైపు, "కొన్ని చుక్కలు మాత్రమే" అని మీరు బోల్డ్ స్టేట్మెంట్లను చూసి ఉండవచ్చు. మెరుగైన భంగిమ: గణితంతో వినయం . నేటి విశ్వసనీయ బుకెండ్లు పూర్తి సర్వింగ్ ఓవర్హెడ్తో మధ్యస్థ ఉత్పత్తి ప్రాంప్ట్కు ~0.26 mL 400-టోకెన్ అసిస్టెంట్ ప్రత్యుత్తరం (ఉపాంత అనుమితి) కోసం ~45 mL "ఒక టీస్పూన్లో పదిహేనవ వంతు" క్లెయిమ్కు ప్రజా సరిహద్దు/పద్ధతి లేదు; నగరం లేకుండా వాతావరణ సూచనలాగా వ్యవహరించండి [1][3].
చిన్న ప్రశ్నలు: AI ఎంత నీటిని ఉపయోగిస్తుంది? మళ్ళీ, సాధారణ ఆంగ్లంలో 🗣️
-
కాబట్టి, సమావేశంలో నేను ఏమి చెప్పాలి?
“ప్రతి ప్రాంప్ట్లో, ఇది మోడల్, పొడవు మరియు అది ఎక్కడ నడుస్తుందో బట్టి చుక్కల నుండి కొన్ని సిప్ల వరకు శిక్షణకు నీటి కుంటలు కాదు, కొలనులు అవసరం.” ఆపై పైన ఒకటి లేదా రెండు ఉదాహరణలను ఉదహరించండి. -
AI ప్రత్యేకంగా చెడ్డదా?
ఇది ప్రత్యేకంగా కేంద్రీకృతమై ఉంటుంది : అధిక-శక్తి చిప్లు కలిసి ప్యాక్ చేయబడితే పెద్ద శీతలీకరణ లోడ్లు ఏర్పడతాయి. కానీ డేటా సెంటర్లలో కూడా ఉత్తమ సామర్థ్య సాంకేతికత మొదటగా ల్యాండ్ అవుతుంది [1][4]. -
మనం అన్నింటినీ ఎయిర్ కూలింగ్కు తరలిస్తే?
ఆన్-సైట్ తగ్గించవచ్చు కానీ ఆఫ్-సైట్ నీటిని పెంచవచ్చు. అధునాతన ఆపరేటర్లు రెండింటినీ తూకం వేస్తారు [1][5]. -
భవిష్యత్ సాంకేతికత గురించి ఏమిటి?
నీటిని చల్లబరచకుండా నిరోధించే డిజైన్లు స్కోప్ 1కి గేమ్-ఛేంజర్గా ఉంటాయి. కొంతమంది ఆపరేటర్లు ఈ విధంగా కదులుతున్నారు; గ్రిడ్లు మారే వరకు అప్స్ట్రీమ్ విద్యుత్తు ఇప్పటికీ నీటి సంకేతాన్ని కలిగి ఉంటుంది [4].
చివరి వ్యాఖ్యలు - చాలా పొడవుగా ఉంది, నేను చదవలేదు 🌊
-
ప్రతి ప్రాంప్ట్కు: మోడల్, ప్రాంప్ట్ పొడవు మరియు అది ఎక్కడ నడుస్తుందో బట్టి సబ్-మిల్లీలీటర్ నుండి పదుల మిల్లీలీటర్ల వరకు ఆలోచించండి ఒక ప్రధాన స్టాక్పై మధ్యస్థ ప్రాంప్ట్ ~0.26 mL మరొకదానిపై 400-టోకెన్ ప్రత్యుత్తరానికి ~45 mL
-
శిక్షణ: మిలియన్ల లీటర్లు , షెడ్యూలింగ్, సిట్టింగ్ మరియు శీతలీకరణ సాంకేతికతను కీలకం చేస్తుంది [3].
-
ఏమి చేయాలి: సరైన సైజు మోడల్లు, నీటి ఆధారిత ప్రాంతాలను ఎంచుకోండి, భారీ పనులను చల్లని గంటలకు మార్చండి, నీటి-కాంతి డిజైన్లను నిరూపించే విక్రేతలను ఇష్టపడండి మరియు పారదర్శక సరిహద్దులను డిమాండ్ చేయండి [1][3][4][5].
ముగింపులో కొంచెం లోపభూయిష్టమైన రూపకం: AI అనేది దాహంతో కూడిన ఆర్కెస్ట్రా - శ్రావ్యత కంప్యూట్, కానీ డ్రమ్స్ చల్లబరుస్తాయి మరియు గ్రిడ్ నీరు. బ్యాండ్ను ట్యూన్ చేయండి, మరియు ప్రేక్షకులు స్ప్రింక్లర్లు మోగకుండానే సంగీతాన్ని పొందుతారు. 🎻💦
ప్రస్తావనలు
-
గూగుల్ క్లౌడ్ బ్లాగ్ - గూగుల్ యొక్క AI ఎంత శక్తిని ఉపయోగిస్తుంది? మేము గణితాన్ని చేసాము (పద్ధతి + ~0.26 mL మీడియన్ ప్రాంప్ట్, పూర్తి సర్వింగ్ ఓవర్ హెడ్). లింక్
(సాంకేతిక పత్రం PDF: గూగుల్ స్కేల్లో AIని అందించడం వల్ల పర్యావరణ ప్రభావాన్ని కొలవడం .) లింక్ -
మిస్ట్రాల్ AI - AI కోసం ప్రపంచ పర్యావరణ ప్రమాణానికి మా సహకారం (ADEME/కార్బోన్ 4తో LCA; ~281,000 m³ శిక్షణ + ప్రారంభ వినియోగం; 400-టోకెన్ ప్రత్యుత్తరానికి ~45 mL , ఉపాంత అనుమితి). లింక్
-
లి మరియు ఇతరులు - AI ని తక్కువ "దాహం"గా మార్చడం: AI మోడళ్ల రహస్య నీటి పాదముద్రను వెలికితీయడం మరియు పరిష్కరించడం మిలియన్ల లీటర్ల శిక్షణ , సమయం మరియు ప్రదేశం గురించి అవగాహన షెడ్యూలింగ్, ఉపసంహరణ vs. వినియోగం). లింక్
-
మైక్రోసాఫ్ట్ - తదుపరి తరం డేటాసెంటర్లు శీతలీకరణ కోసం సున్నా నీటిని వినియోగిస్తాయి (కొన్ని సైట్లలో నీటి రహిత శీతలీకరణను లక్ష్యంగా చేసుకుని డైరెక్ట్-టు-చిప్ డిజైన్లు). లింక్
-
గూగుల్ డేటా సెంటర్లు - స్థిరంగా పనిచేస్తున్నాయి (సైట్-బై-సైట్ కూలింగ్ ట్రేడ్-ఆఫ్లు; రిపోర్టింగ్ మరియు పునర్వినియోగం, తిరిగి పొందిన/గ్రేవాటర్తో సహా; సాధారణ రోజువారీ సైట్-స్థాయి వినియోగ ఆర్డర్లు పరిమాణం). లింక్